第97部分 (第2/4页)

除以该处的声速,马赫数越大则表示空气被压缩地越厉害。当马赫数小于等于0。4的时候,空气压缩性影响并不大,即可认为空气是不可压缩的。而当马赫数大于0。4之后,研究飞行器的动力大小就必须考虑到空气的可压缩性影响,尤其是在进入跨音速飞行之后,因为压缩性会产生一种称之为激波的独特流动现象,这将对飞行器的空气动力和外形设计带来重大影响。

“低速飞行,飞机与空气之间的相互影响是一个渐进的过程,视空气为不可压缩。而高速飞行时,飞机突然来到跟前,空气无法让开,只能突然地遭到强烈的压缩,其压力、密度和温度都会陡然升高,相对于飞机的流速则突然降低。这种从无变化到有变化的分界面,就叫做激波。”

“激波又分为正激波、斜激波、圆锥激波。然而在超音速飞行时,气流因阻滞而产生激波,因膨胀而产生膨胀波。激波可以说是超音速气流减速时通常产生的现象,膨胀波是其加速时所必然产生的现象。激波使波前、波后参数发生突跃式变化,气流穿过,激波时受到突然的压缩,压强和密度温度都升高,速度和马赫数下降。然而膨胀**前、波后参数发生的却是连续性变化。”

“还有一点,激波虽然厚度很小,但气流流过激波时,在激波内部气体黏性引起的内摩擦却很强烈,气流的部分机械能会因为消耗于摩擦而变成热能,继而使自身温度急剧上升,此现象称之为气动力加热。但膨胀波却没有上述损失,这种损失类似于附面层,因气体黏性而让气体动能变为热能,造成了动能的损失,可将这一损失所引起的阻力称之为激波阻力,简称波阻。”

张宇很少过问王助他们的研究进度,他知道王助对喷气式飞机更感兴趣,肯定了解很多科恩达项目组的研究进度,不过难得有机会在中航里逗留,强烈的好奇心还是驱使他过问起了研究进度,不过在此之前王助还悉心的为他讲解了一些理论知识,估计是王助担心张宇一会儿听不懂,所以才说教了一番高速飞行相关知识理论。

“我想,如果不出意外,波阻出现在飞机发展的道路上,必然会成为一个巨大的、难以逾越的障碍。”

“所以我们才给它取了个特别的名字,叫声障。”王助看了看张宇,在偌大的会议室里此时已经只有俩人,能说的都可以说。“其实声障问题并不是在研究当前这个项目的时候出现的,我们当初对活塞式飞机进行研究的时候,就发现平飞时速达到了七百多之后,当飞机进入俯冲的时候,定然要接近于声速,这时候飞机必将会产生剧烈的抖振,飞行也变得极不稳定,几乎会让飞行员失去对飞机的操控能力,如果飞机做的不好,会有结构遭到大破坏,甚至临空解体的危险。”;

“你不是说声障是有飞机在飞行中所产生的激波和波阻造成的吗?对这两个影响因素进行研究、解决,不就突破音障这个大难题了吗?”张宇此时真的是揣着明白装着糊涂,对于这些后世近乎科普类知识的问题,放到现在都堪称是高技术保密级别的东西,当然张宇是可以对这些问题发问的,不过外人可就不行了。

“刚才我们已经说到激波和波阻的产生,其实不同外形的物体在超音速条件下由于产生的激波不同,其波阻也不一样。物体的形状对气流的阻滞作用越强,产生的激波越强,自然波阻就越大。”

“类似于长方形的物体,常产生脱体激波,即在距离前端一定距离的地方产生强烈的正激波,脱体激波对气流的阻滞作用很强,因此会产生很大的波阻。而尖头的物体,在尖头前端常产生附体斜激波,该激波对气流的阻滞作用就比较弱。所以物体越尖,气流所受的阻滞越小,激波越倾斜,产生的波阻越小。所以我们对超音速飞机的机身、机翼等部分的前缘设计都应该呈尖锐状,这样便可减小激波强度,进而减小波阻阻力。”

本章未完,点击下一页继续阅读。