第37部分 (第2/4页)

自行都非常大的小星,称为天鹅座61星。他对天鹅座61星持续观察了一年多才得到测量结果。这个结果把天文距离带到了亚弧秒级别,他得到的结果是0。31弧秒。

这个史诗级的距离数字是100万亿公里。到了用万亿来作单位的时候,我们就知道要发明一新的单位了,否则再发展下去就会很不好记。宇宙中的速度上限光速走一年的时间作为距离单位就派上用场了。

通过光速,我们可以把天鹅座61星的距离为11光年,很好记忆。

有了先例,对于附近恒星的测量立即就得到了发扬光大,在贝塞尔成功测量之后的两个月,英国天文学家亨德森就测出了离我们最近的恒星半人马座a星,我想这应当成为人类的常识:4。3光年。

在我亲自加入观测大军之前,我也资助了大量的天文学家建造更好的望远镜,共有70颗恒星被视差法测量出来。最远的数字约为100光年,这是不太可靠的,因为太远了,100光年大概是视差法的极限。

我们肉眼能够看到的星星约有6千颗,我们能测出距离来的仅仅70颗,真是任重而道远啊。不过,由于有了这70颗星星的距离数字,有天文学家能够用数数的方式来对我们的银河的大小有一个很粗略的估计。

当伽利略在1609年把他发明的望远镜对准银河时,他和他的小伙伴们都惊呆了。原本只有6000多颗星星的天空霎时间变得不可计数,像上帝在天空中撒了一把玉米面似的。(玉米面是唐宁喜欢吃的山东煎饼的主料)

1785年,w。赫歇耳估计了一下银河系的恒星数目,约一亿颗。我们用灯火做个小实验就能印证一个著名的定律:a星的亮度是b星的九分之一,a星的距离便是b星的3倍。

赫歇耳姑且假定所有恒星的亮度都一样的,就能对银河的大小得出一个非常粗糙的数字。他根据这些恒星的亮度等级,断定银河系的直径约为到明亮的天狼星距离的850倍,而银河系的厚度是这个距离的150倍。

根据最新测出来的天狼星距离的数据,赫氏的估计是银河系的直径为7500光年,厚度为1300光年。以我们现在的望远镜制造工艺和计算手段,我们所知道的银河系恒星的数目远不止一亿,恒星的亮度(大小)也不可能是一样的。

不过,这是人类第一次将对宇宙的想象有理有据地延伸到了近万光年的级数。我为什么会介入恒星测量呢?那是因为有一个天文学家来问我,最近通过太阳光谱发现太阳是由氢和氦构成的,这有什么意义吗?

我说,太阳有氦,说明氦在恒星中比较普遍,可以用来解释造父变星。在1784年9月10日,爱德华·皮戈特检测到天鹰座η的光度变化,这是第一颗被描述的经典造父变星。

几个月后由约翰·古德利克对息发现的变星造父一进行了精确地测量。造父一的视星等最亮时为3。7等,最暗时为4。4等,光变周期为5天8小时47分28秒。

怎么解释这罕见的变星现象呢?氦,正常情况下拥有两颗电子,在高温下电离,失去电子,恒星表面全是电离的氦。根据温度的高低,又可以把电离分为单电子电离和双电子电离。

双电子电离的氦的透明度相对于单电子电离的氦有显著的差异,随着恒星不断地给氦外壳加热,氦的双电离也就越来越多,其不透明度增加,让恒星更加高温,于是,恒星开始膨胀。

这时,我们就看到变星的光度增加了。恒星膨胀到一定的程度把内部冷却下来,双电离的氦纷纷变身回单电离,透光度增加,更增加了冷却的速度,于是,变星又慢慢地缩回去,这是黯淡过程。

变星的数量并不多,因为它需要恒星大小、组成元素的机缘巧合。不过,一旦它的周期性出现,

本章未完,点击下一页继续阅读。