第64章 月球探索:材料攻坚之路 (第2/5页)

突破口。

年轻的工程师小刘皱着眉问道:“安德烈先生,您提到的铁钴镍合金虽然可行,但在月球环境中,这种合金会不会受到辐射影响而改变磁性呢?我们需要考虑长期稳定性。”

安德烈点点头,认真回答:“这确实是个关键问题。我们可以在合金表面镀上一层特殊的防护膜,这种防护膜能够抵御一定程度的辐射,并且不会影响合金的磁性。后续我们还需要进行更多的模拟实验来验证。”

王大力兴奋地一拍桌子:“俺觉得这办法行得通!虽然种地俺在行,但太空种植俺也是头一回听说。不过这个办法简单直接,说不定真能解决大问题!”

林悦若有所思地点点头:“安德烈的提议给了我们新的方向。我们可以将这个磁力技术与我们的智能设备相结合,通过智能系统对磁力强度进行实时监测和调整,以适应植物不同生长阶段的需求。同时,我们也可以借此机会,重新评估设备对特殊矿物质材料的需求,寻找优化方案,尽可能减少材料的使用量。比如,我们可以优化芯片的电路设计,减少不必要的超导线路,从而降低对材料的依赖。”

李教授也表示赞同:“这或许是我们目前唯一的出路。我们必须尽快整合各方资源,制定详细的实验计划。在喜马拉雅山脉的溶洞区建立模拟实验仓迫在眉睫,我们要争分夺秒地展开实验,验证这个方案的可行性。但在实验过程中,我们还得考虑到溶洞内复杂的地质结构对磁力的影响,说不定会出现磁力干扰的情况。”

技术研发中心的负责人赵主任面色凝重地总结道:“此次实验关乎人类在太空种植领域的未来,我们没有退路,只能成功。尽管前方困难重重,但我们必须全力以赴。从现在开始,各小组紧密协作,想尽一切办法克服材料稀缺和技术难题。这是一场与时间和资源的赛跑,也是人类迈向太空生存的关键一战。我们不仅要在技术上突破,还要在资源管理、实验规划等方面做到极致,确保每一份资源都能发挥最大价值。”

会议接近尾声,张工再次起身,神色依然凝重:“关于智能设备在月球溶洞环境下的信号延时问题,我们还需深入探讨。在月球的强辐射和复杂地质环境中,信号传输极易受到干扰,这不仅会导致控制指令的延迟,甚至可能使设备失控。目前我们的量子通信技术虽然在理论上有优势,但实际应用中,溶洞内的特殊环境可能会极大地削弱其性能。”

林悦皱着眉头思考片刻后说道:“我们或许可以在溶洞内建立多个信号中继站,通过对信号进行接力传输,缩短信号传输的距离,以此减少信号在传输过程中的衰减和延时。同时,利用智能算法对信号进行实时纠错和增强处理,确保信号的准确性和稳定性。”

负责通信技术的小陈摇了摇头,面露难色:“建立中继站说起来容易,但实际操作困难重重。首先,我们要确保中继站设备自身能够在恶劣环境下稳定运行,这对设备的抗辐射、耐高温和耐低温性能要求极高。而且,中继站之间的信号同步也是个大问题,稍有偏差,反而会加剧信号的混乱。”

安德烈这时提出:“我们能否根据月球溶洞的地质结构,设计一种特殊的信号屏蔽与引导装置?利用月球当地的矿物质,制造出能够屏蔽外界干扰信号,同时引导我们所需信号的设备,就像在溶洞内搭建一条信号的‘高速公路’,保障信号的快速、稳定传输。”

李博士眼睛一亮,接过话茬:“这是个新颖的思路。我们可以研究一下月壤和溶洞内矿物质的电磁特性,挑选出合适的材料,通过3d打印技术快速制造出原型设备进行测试。说不定能找到一种既经济又高效的解决方案。”

经过数周紧锣密鼓的研究、实验与调试,基于李博士团队对月壤和溶洞矿物质的深入研究,他们发现了一种富含铁钛氧化物

本章未完,点击下一页继续阅读。