第三百四十一章 庞加莱猜想(拓扑学) (第1/3页)

庞加莱想平面之间的等价性还是很容易的。

一个皮球,是一个面组成了,可以平展成一个面的形状。

这是让一个二维的面从三维空间中转化成立二维空间。

如果是四维空间的皮球,是否能够平展成二维空间的平面?

一般人粗略的一想,还以为可以。

但是庞加莱敏锐的洞察到,四维空间中的皮球,不是一个二维的面。

或许是个三维的体,搞不好就是三维空间的实心球体。

这个想法突破了一般人的认知,但在数学是是轻松可以推论的。

只是这需要去证明才行。

123

拓扑”跟“群”一样也是一种对结构的描述,但是它不再专注于结构的外观、尺度,而只关心结构的性质,即不再进行定量研究转而进行定性研究,这是数学发展史上又一次伟大的突破。

比如我们可以把一个瘪了的球、一个正方体、一个十二面体都认为具有同样的拓扑,因为这些结构在三维空间中都是封闭的,它们都可以通过连续变换变成一个球。你可以想象这些物体都是橡皮做的,只要充满气,就能把它们涨成完美的球形,在拓扑学中我们说这些结构与球是同胚的。具有同胚拓扑结构的空间几何体在遵循“不撕裂不扯破”的原则下能够任意相互变换。所谓“不撕裂不扯破”就是不破坏构成结构体的各点之间的关系,比如A点和b点是相邻的,在变换之后A点与b点仍然是相邻的。有一种结构,无论你用同样的方式怎么努力,也不能变成球形,那就是轮胎。这是因为轮胎与球具有不同的拓扑结构,球是单联通的,而轮胎是双联通的。

欧拉公式揭示了拓扑性质与对称性之间的联系,在单联通多面体结构,只能产生5种完美对称,我们真实的宇宙一样具有某些拓扑性质,这些拓扑性质也同样对对称性有约束,因此才形成了我们所见的宇宙。

克莱因瓶

它和莫比乌斯带非常相像,实际上是莫比乌斯带的三维扩展,但是与之不同的是,克莱因瓶是一个闭合的曲面,也就是说它没有边界。我们可以想象将两个相反的莫比乌斯带的边缝合在一起,就构成了一个克莱因瓶。莫比乌斯带必须跨越到3维或更高维的空间才得以形成,克莱因瓶则跨越到于四维或更高维空间中才能制造出来,它在我们的三维空间中是不可能存在的,它实际上是在四维空间中将三维空间的正反两面扭曲连接到一起。

拓扑学上最传奇的故事莫过于庞加莱猜想了。1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学的猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球,即任何单联通的三维封闭流形都同胚于三维球面。后来这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”,即“任何与n维球面同伦的n维封闭流形必定同胚于n维球面”。前面我们已经讲过同胚是指通过不撕裂不扯破的连续变换可以变为同样形状的性质,同伦则是比同胚更宽松的变换,比如我们可以把一个三维的球压扁在一张纸上变成一个二维的圆盘,然后在二维的圆盘上长出几根刺,这个图形与原来三维的球都是同伦的。庞加莱猜想其实意味着在我们的三维空间中的任何封闭物体,不管是一块砖头,一个人,还是一台拖拉机,只要它是封闭的,在四维空间中它就必然能连续变换成四维空间中的三维球面。换句话说,正如三维球体的边界是一个二维封闭球面一样,四维球体的边界其实就是三维的封闭球面,这个球面去掉一个点展开来就是整个三维空间,任何在这个三维空间中封闭的物体都可以通过拉伸、弯曲、延展变成一个三维的封闭球面。类似三叶结这样的结构在三维空间中当然不能变成一个球,但是在四维空间

本章未完,点击下一页继续阅读。